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IIL. On the developement of exponential functions; together with
several new theorems relating to finite differences. By John
Frederick W. Herschel, Esq. F. R. S.

Read December 14, 1815.

IN the year 1772, LAGRANGE, in a Memoir, published among
those of the Berlin Academy, announced those celebrated
theorems expressing the connection between simple exponen=
tial indices, and those of differentiation and integration. The
demonstration of those theorems, although it escaped their
illustrious discoverer, has been since accomplished by many
analysts, and in a great variety of ways. LapLacE set the
first example in two Memoirs presented to the Academy of
Sciences,* and may be supposed in the course of these
researches, to have caught the first hint of the Calcul des
Fonctions Generatrices with which they are so intimately

connected ; as, after an interval of two years, another demon-

stration of them, drawn solely from the principles of that
calculus appeared, together with the calculus itself, in the
memoirs of the Academy. This demo_nstratibn, involving,
however, the passage from finite to infinite, is therefore
(although preferable perhaps in a systematic arrangement,
where all is made to flow from one fundamental principle)
less elegant ; not on account of any confusion of ideas, or
want of evidence ; but, because the ideas of finite and infinite,
as such, are extraneous to symbulic language, and, if we

* Mém. des Savans Etrangers, 37730 p. §35.=Mém, de ’Acad. 1772. p. 102«
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26 Mr, HERSCHEL on the

would avoid their use, much circumlocution, as well as very
unwieldy formule must be introduced. Arsocast also, in
his work on derivations, has given two most ingenious
demonstrations of them, and added greatly to their gene-
rality ; and lastly, Dr. BRINKLEY has made them the subject
of a paper in the Transactions of this Society,* to which I
shall have occasion again to refer. Considered as insulated
truths, unconnected with any other considerable branch of
analysis, the method employed by the latter author seems
the most simple and elegant which could have been devised.
It has however the great inconvenience of not making us
acquainted with the bearings and dependencies of these
important theorems, which, in this instance, as in many
others, are far more valuable than the mere formula.

The theorems above referred to are comprehended in the
equation.

A”uxr_{e“'ﬂl}”ux N ()
or, more generally

J(+A)u=f {5“'])}%; N ()
where the A applies to the variation of z, and the D to the
functional characteristic #; and where # may have any value
whatever.

Taking these theorems for granted, I shall observe, that,
in their present form, they are but abridged expressions of
their meaning, and that to become practically useful, their
second members must be developed in a series of the powers
of Az.D. This part of their theory has been most beautifully
and satisfactorily treated by LapLAcE in the case of 7= —1

¥ Phil. Trans. 1807. I,
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{one of the most important). Unfortunately, his method
turns upon an artifice which, although remarkably ingenious,
fails to afford us any satisfaction except in this particular case;
and I am not aware that his researches have since extended
beyond it. The essay of Dr. BRINKLEY (the only author I
have met with who has attempted the general problem) goes
to the bottom of the difficulty, and leads to a formula which,
considering the complex nature of the subject, must be
allowed to be far more simple than could have been ex-
pected. Itis often, however, advantageous to undertake the
solution of the same problem by different methods. The
excellent geometer I have mentioned, has adopted one which
appears at first sight very inartificial. It consists in expanding
the second member of the equation (@) reduced to the form
{fl«+}—t—; +l—2%- -}~ &e. }”

by the well-known theorem for raising a multinomial to the
n'* power. The difficulties and apparent obstacles which this
method presents, he has overcome or eluded by a singularly
acute discussion of the combinations of the various numerical
coefficients and their powers. But it is obvious that this
method, applied to the more general equation (5), would lead
into details of extreme complexity. This consideration in-
duced me to begin with that equation, regarding the other as
a particular case of it ; and I have thus arrived at a general
and highly interesting formula (equation (2 ) of the following
pages) hitherto, I believe, totally unnoticed, and which in the
particular case of the equation (4), when # is a positive
integer, affords precisely the same result as Dr. BRINKLEY

has given : when #, however, is negative, it yields an expres-
E2
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sion widely differing from his in point of form (though of
course affording the same numerical results) and which in
the most important case, where #==- 1, takes a form of
greater simplicity than any I am yet aware of.

I purpose then to consider the second member of (b) as
developed in a series of powers of A x.D (which for the sake
of brevity we will denote by ). If then we suppose

S (¢)=A +A"t 4 A,t* 4 &c.
we shall have

dxf(st)

L2oe. .2 dE¥

where ¢ = o after the differentiations.

A=

t
Now, it is easy to see that ‘i%%-)- will, by performing the
t
operations indicated, assume the form
t ¢ 2, 1 2 t .
K. .e:Df(e)+K, e DJf(e)+ &e
K  being a certain numerical coefficient, depending on an
L5y
equation of differences
Kx+1,y+|=(y+1)‘ K%y+l +Kx,y

whose complete integral is

(y——l)x — y+.l___.__l-£-—;—-
Kx,y -'—'T_+'( 1) 1020000 (3""'1)'0l

C, being an arbitrary function of y, to determine which we
have only to consider that K _ is always, necessarily, unity ;
and consequently

Cx.xﬂcx_‘.i"_‘:!_‘_)f-{- ........ (—1)" ' C. = —

Lz o (2=1)

Z
.__.Cy. y Cy_

1

Now, we know that

x (x—1)2
— L — = oo
x ; +4 &c.=1.2...,.7
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that is,

1 x I (z—1)% — e
o X - 4 &c.=1;

1.2...% LZ2oges(2=1)"°

whence it is plain that

and of course that

z
K _ Y -“—r- (y.—l)‘” 45 &c.

Z Y 1.2.0000 y
AYo¥

o— ev——

TeZ.0ese ¥
where AYo* denotes the first term of the y# differences of

the terms of a series 0%, 1%, 2%, &c. We have then making

t==o,

T

t
d;ﬁe Df(l)AO,'I"""""

If we separate the symbols of operation from those of quan-
tity, the second member of this equation may be much more
elegantly written as follows :

{DA+(DA)2+ R e 14 €O [ T ceeen (1)
referring the D to the functional characteristic f; and the A
to the o and its powers.—Or,we may throw it into the fol-
lowing form,

Df(x) D2f(x 2 Dxfx
{2LA A p2AI0) A2y L DI 2 e

.....

Upon this, we have to observe—first, that the addition of the
term f (1) at the beginning of the series within the brackets
makes no difference in the result ; adding only to it the term
JS(1)x 0", which vanishes of itself: and, in the next place,
that we are at liberty to suppose the series continued to

. . z * . .
infinity ; as every term beyond ?—%—“—; A" 0" vanishes, owing
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to the well-known property of the functions A*+' o %
A*1?o% &c., each of which is equal to zero. Our series
then becomes

{f(l) +-]2-f-(-l-)-A+&c.} 0" =f(14A)0*
and we have therefore
A =f(1) =S (142)o+ 5 f (144) 0 +&C - (2)
In applying this series to any particular case we have only to
develope f (14A) in powers of A: then striking out the first
term, as well as all those where the exponent of A is higher
than that of #, to apply each of the remaining ones imme-
diately before the anunexed power of o, and the developement
is then in a form adapted to numerical computation. This
formula may be also farther compressed into

f(gt)::f(l—l-A')go't; .................. .(3)
by simply writing it as follows:

F(@) =70+ a) {1+ 22455 + &
I shall notice one more form in which the same result may

be exhibited. If we continue the series (1), as before, to
infinity, and add the term 1 at its commencement, it becomes

(2R S0 L s ] ()= Do (o)
whence, we obtam
FH=7(1) 5.8 Pof () 455000 f (1) + &
or, attending carefully to the application of the symbols
FOH=P i+ 5+ &
=SPF o)L ce e oaa(4)

We will now proceed to apply these results to the actual
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developement of equation (a). And, first, in the case where
n is a positive integer, we have

f(H=(=)"s  f(t)=(t—1)"
consequently,
f(14a)=(14a—1)"= 2"
wherefore the equation (2) becomes
(5’—1)":%—.A”0+-§3. Aoz +;§-§ A0 &L (5)
of which the first # —1 vanish of themselves.

Let us next consider the formula (gt—-l)“‘" ; — 7 being a
negative integer. As this function, when developed, must
evidently contain the negative powers of ¢, as far as -7, we
first throw it into the form

—_n 4 n . a1 =7 § log.e* Qu
1= "‘T} , or its equal £~ {'?7'::—}

5t

supposing then f (¢) = {
the equation (2)

¢ - ¢ log. (1 A)yn t* log. (144)
o=t b {22 o o, (ol
: &c.; (6)
All that now remains to be done is, to develope the func-

txon{l—"-g-'-(-A'—"'——-A)} in powers of A. When # = 1, the deve-
lopement is well known to be

1 A A
T 3 +—§'—-—,&C.
Hence, if we suppose
-~ _1"1+B .—-+B —-+&c.

we shall have
B — Tog. (14-4)
A A

log. «* }”, we shall have by applying
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and in general, if

t?.
e} =147 B 4 S e
we shall have ,
”B ={1(§-;L§-LA_)'}”0”;U6\Q 6298 06 & & e o LA (8)’

x
The coefficient of A* in the function {133'—-(-;’"_—5—)} ", deve-
loped in powers of A, is evidently
d¥+n {log. 2)7
) O RPN (x+n).dt't+"
¢ being made =1 after the differentiations. Now we easily

find, that the expression
dZx+® (log. )"

de*tn
After executing the operations indicated must take the form
1 -1 oo 1
Ax+ Ax Jdogl b .. Ax « (log. )
tx -+ n

and the equations which determine A , &c. are

"B = (ehn) "TA,

”"’AH: — (w+4n) *2A +("--1) A,

A.I-‘-l (x+n) Ax+ 1|
The integration of these equations is attended with no diffi-
culty, and gives for the value of A (the only one wanted )
as follows :

oot

— Qe —_—1). X
( 1)x 1.2 ($+72 ) x+n x+n Z4n

where there are (n—1) signs of integration ; a constant being
included under each. If now we suppose
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and so on, we shall have no difficulty in convincing ourselves
that
x o1 i
A=) 1o (1) TS )
All the constants vanishing but that added at the first inte-
gration which is equal to 1.2....7n. When { = 1, the expres-

. &+ (log.1) )
sS10n fOI‘ W

efficient of A* will become

) (_I)x l.zx..‘.-;l.n . nf-’S{ x+;_r}

We are thus conducted to the following value of B,

» — A0 =1 I AP0 feed { 1 }
Bx_—- 1.2....73.{n+l- S{n}-f—’;g. S;l—_—i.——x- .

drovee B TS ()
The cases where n==1 and n = 2 are the only ones of suffi-
cient importance to merit a more particular consideration. In
the former, we have already in our equation (%) given the
expression for 'B_or B . Its alternate, even values (the
signs alone excepted) are those numbers so well known in
analysis by the name of the “ Numbers of BerNouiLLL,” and
among the variety of expressions they admit, I know of none
so compendious, or so readily computed arithmetically. In-
deed, to compute the higher numbers of BErRNovILLI directly
has always been attended with some labour. If we examine
the values of B 0 BE, Bz‘, &c., we shall observe that all the

reduces itself to A_, and therefore the co-

odd ones (with the exception of B]I =— -:—) vanish: asindeed

may easily be shown a priori from the nature of the function
t

——y
g1

A considerable simplification of the latter case takes place
owing to this circumstance : the alternate values of "B, being
MDCCCXVI, K
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susceptible of an expression by means of those of "B : In
fact, the odd values of B, vanishing (except B ), we have

n t Q°
1 + Bl . T+&C. '—:{?_—T}
. iz 2
={B.t+(1+L B, + &)}
and, comparing the coefficients of :***" in the two members
of this equation, we obtain

s‘Bzx_!_l = —(2z 4 1).B
Hence this remarkable theorem,
{3S(- =, S( F&ec. §0* = (2241).B, ;eninnn(10)
which may also be regarded as affording another general ex-

pression for the numbers of BERNOUILLI.
- Laprace has shown that the developement of the function

— may be derived from that of ?.TI.‘;’ and that, if the coeffi<
cient of ¢ in the developement of the latter be represented
by a, it will be — -;f;?_-"-_’-! in that of the former. Now, by the
application of our equation (2), we find that

{E——L’;”—.-_-(—‘-)" §2+A} -[=-]lz {2+A "0 &C. g (11)
Making then z#==1, we find for the value of az_:
. —-{z‘””zA—zx""o’ A% oaennnnn + A"’"‘} o *—1
Ay = T (x—1). 2%

and consequently the coefficient of t* in ;:t-_—l will be

{2‘1'-2 A—2¥"3 A2 Foeenen =+ Ax—l } 0%t

i ol

. L2 o0uos (#mm1). 2% (27—1)
Dr. BrRINKLEY has arrived at the same result.
I

The computation of the functions "' § { — } 1 {,, I3 } &e,

n

is attended with very little difficulty ; for, if we multiply toge-
ther successively the terms 14 2, 2 4 2, g -} %, &c. and call
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the co-efficient of 2*—?in the product #S (z), we shall have
r—n418(x) n—1 I
i}

S ———— T
——

1203 areene

X
and, as every value of "~'§ {—;—}, from z=nup to == oo is

wanted, the principal part of the work consists in calculating
the first #n terms of the successive products, which, (being
derived from one another) except # is considerable, is attended
with very little trouble.

The remarkable form of our equation (¢) enables us to ex-
hibit a variety of properties of the functions comprehended
under the expression A" 0%, some of the principal of which I
shall now proceed to notice.

Suppose f (&) =a,4a, .t +a, ' &c.
Then, as we have shown,

ax,____‘{—'(z—‘%%; ........ a0 os s s (13)
from which we find
S+ a)oF=12.....2.8,........ (14)

If then the developement of f (¢') be given, we are enabled to
assign the value of f (1 4 A)o* in functions of z, and the con-
verse. It is scarcely necessary, however, to remark, that the
extent of these equations is not limited to cases in which the
actual developement of f (1 -4 A) in powers of A is practicable,
or in which the-form of fis known, or even dependent on
analytical relations. |

Let us suppose a function F(#), and any two others f ()
and f' (#), so related that

F(@)=f(t).f'(?)
F(t)=A +A,.t+ A, &
Fe

Let also
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a similar notation being used, for f(#) and f* (¢), changing
only A into @ and a’. It is evident then, that
A, =a & d-a .a _ ... a_.a .

In this equation, substituting for A _ &c., their values drawn
from (1g), we find
F14-A)or=f(1 4 A)0" f (14 A)0"+= f(14-8)0" /(1 F A)or—"

‘z(x_l)f(l—{-A)Og r( 14 Jor—2
-+ &c.
This equation may be abbreviated, upon the principles we
have all along adopted, by a very simple and convenient arti-
fice of notation, viz. by applying an accent to one of the A and
also to the corresponding o; these accents not altering the
meaning of the symbols, but solely pointing out those which
are to be applied to one another. The second number of this
eguation then becomes
JaAB)E (1480 5 f (148 )o.f (144)014 &c.
in which the symbols of operation may now, without confu-
sion, be separated from those of quantity, when it will take
the form
S F2)f (14 o) o 4 £ o o e

And our equation becomes
F(1+A}o"=f(1+A).f’(1+A‘){o+o’}”; .............. (15)
We must here notice, that the second member of this equation
is precisely what the first would become, if, instead of F(1-}-A)
we had written /(1 4+ A) . f' (1 4 A), its equivalent, and in-
stead of 5 the symbolic expression o 4o which is equal to it
In quantity, and then applied the former A to the former o,
and the latter to the latter, by the method of accentuation
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above explained. Pursuing this idea, let us suppose F(¢) to
be decomposable into any number of factors f(¢), f'(2), /" (2),
&c., and by executing the same mechanical process on the
expression I' (1 4 A)o*, we resolve it into
Sf(r4a).f (144" & {o+o’+ 0" - &c. }”.

A moment’s attention to the method by which (15) was ori-
ginally derived, will convince us that (attending to the proper
application of the symbols) we are at liberty to develope the

expression {o + o' 4 0" + &c.}”, and thus we have the
equation

F(142 Jo'=f(14A).f (14 2"). &C. § 00/ -8c0. Lo (16)
Should any one of the functions f (14 A), &c., be of the
form (14-5)* any term multiplied by o in the developement
of {o -+ o' + &c. %x will acquire the coefficient (1 4 A) 0%,
which, being, by (14), the coefficient of # in the develope-
mentof (1 <4-¢£— 1)% or ¢, multiplied into 1.2.8.....7, is evi-
dently ¢qual to #. Now it is the same thing whether we
write & for (1= A)* o after the developement, or at once
strike out (1 4 A)# and for o write % previously to it. Hence
we conclude that

(142 ) F(14-2)o"=f(142)f'( 14-27).&0. { koo’ &e. } s

T e (17)
where, as before, F(#) =f(¢) ./ (¢). &c.
The expression f(1 4 A)0* is susceptible of a somewhat
varied form, deducible from the identical equation

1
. whn
FE)=riE)" |
The coefficient of ¥ in the second member of this is equal to
that of ¢*in f { ( ;’)”} multiplied by =, that is, by (13), to
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i { (1+A)”}”0; and thus we obtain

j‘{(lm}.A)n}o”:n‘”f(l-*-A)O”; ........... o...(lS)
From this equation it is easy to derive the two following
o={f(1+A) +f(l—_—:—&)}ozx—l;' ............... - (19j
0={f(1+A) _—f(-l-_(—_l—z)}ow; ............. (20)

Let f(¢) be a rational, integral, finite function of ¢, and
suppose it to contain the powers of ¢, #, #4, ¢, &c. ; it is evi-
dent then that we shall have, by (14)

F(dAa) =05 cceviiiiiiiL, (21)
in every case except where z is equal to either of the num-
bers p, ¢, r, &c. The following forms of f satisfy this condition

f(t) = (log t)”

F@)=1LO+1L{+}

SO ="L@+1+ (=1Ll + 5}

f(By="C@)— (—1)"Ci5}
or, lastly, the sums, powers, or products of any of these forms,
any how combined.* The excepted values of z, are-—for
the first of these forms, £ = n—for the second, r =2,
and for the third and fourth, x = #n, orn — 2, n — 4, &c. Also
from the general theorems delivered by Mr. SPENCE, we find
for the value of f (1 4 A)on—z-’; (which comprehends all the
excepted cases) in the third and fourth of the above forms re-
spectively 22L (2) and 2z+1C (1).

It may not be uninteresting to descend to a few more par-
ticular applications of these general theorems. If we suppose

% Logarithmic transcendents, pages 45, 6g.
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F(t)=(log. t)*, n being a positive integer, we have f{( ¢ )=t"
and conscquently, by equation (14),

{log‘ (1+A)} 0¥ ==05. .. .. ceeeeae(22).

in every case but where #==n, when it becomes 1.2 ....zn. If
n==1, this becomes

AO¥ AP 0¥ A%0*
0=--—;«-—2+ ------- '-i—_;_"°°‘°'-""(23)'

in every case but where y=1

If we take f (t):—_w;»- , or f (&)==¢—t, we find in the same way
1=A”0”-—Ax""'o”+ ..ot AOF. (24,)
Again, let f (1) = >, then will f(¢') = sec (v -), and as

the coefficient of 6 in sec. 6 is (as EvLer has shown)*

22.z+z 22+ 1
w24 C ( 1 )’
that of #** in sec. —— will be

-1
(1) 2%tz zaxt

1
zx+_f—. C(l)'

which, compared with the expresswnﬂ_‘_;"..‘}_L gives
e 2X

{ - }2x+l

C = (1 . 1A Zx.

( ) ( ) ..... (zx) 1+(1+A)"0 9"""(25)"
which seems the most compendious form in which this com=
plicated function is capable of being exhibited in finite terms,
as well as the most easy of computation in any insulated case.

Iff(z)—-—

, we have f (¢)=tan V—_—;l-, and

I 2 2 X §

z'+

azx-—-x"‘ 1.2..... (2a=—1)" 14(140)*

# Cale. differentialis. 2¥+* C(1) is used to denote the series

I - I 1 o— &G
R I Y 2T
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But the coefficient of >~ "in tan. ‘/_t__ is
—1
2™ (27 —1).
(—1)°- T 2. (20 0 221

where Bm___I here denotes the 2™ in order of the numbers of
BervNouiLLi. Equating these two values, we find

. (—1)* 22 1 2% =1 ;
B e peeee e (26)

We will now proceed to consider the developement of any

function of the form
- u =f(€'s & an &C.)

t, ¢, ¢, &c. being any number of independent variables. The

coefficient of ¢~ #v. "= &c. being denoted by A

x5 9, %, &c. ? we
have

A —_ dx+y+ &c. u
Ly Ys Beeere pz. 008X 1eee.y X & dEY.di7. &c.
Now, regarding % as a function of ¢, we have

dtx""‘f(l"'i"A’é' ) & :&C') 0¥

Again, considering this as a function of ¢’, we obtain
z+y,
‘2%‘717'7 S (144, 144", ¢, &e.) 0%, o¥
(the accents over the A, and o, indicating, as before, the
application of the symbols )—and so on. Thus we find
dx-{—y +2+ &e. u / ® aly Uiz
e =/ (114, 14-4', &c.) 0% oY, 0" &,

and of course,
_SEA s i A A", &e) 0%, o). 0%, &c (e )

Toypmoke. T 1eii.aXi.es CYXTaaan zx,&c. s 7
Laprace has shown,* that, in any function u,

¥, %5 &c. of @,

¥ %, &c.if  be made to vary by «, y by 8, &c. simultaneously,
the following equation, analogous to (@) will hold good ;

* Theorie Analytique des Probabilités, p. 7o.
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d d
o e o &2Co

::;{gu d£+ﬁd3'+ —— 1}”u
X ¥y B &C.

Hence the function to be developed is
| {g W, ¢, &C. —1 }"
n being a positive or negative integer
In the former case, the coefficient of £=. 2, &c. is
{(1+A). (14 A"). &C. m1 }n ®, oY, &c.
IZeoe e T X 10200..9 X &cC.
that is, developing the numerator
{( T4 A% (14 A" &Co e 7-:( X + A" ! &c.+&c.}o”.0’!. &e.
I.200000. ERLeZoosody X &C
Now, (14-A)"0* ==n*, (14A")" 0¥==n, &c. and thus the
numerator of this expression becomes,
nx+y+&c.__1$(n‘__1)x+y+ &c. + &c.
— AT Ox-{-j-[- &c.
and the coefficient of . #2. &c. therefore becomes
n  F+y+ &c.
1.2...1.5::2( 1.Z2.ee.¥X &c.=Ax, ¥y &ttt (28).
In the latter case, where the exponent is negative (== —n)
the function to be developed is
{1e 4 e 7 ]
the coefficient of ##. ¢¥. &c. in the latter part of this expres-
sion, is
log. & (1+A){14+A') &e. n
{( !g+i)(r+a‘). &c. = 1 }}0' 0% &c. .
H N (AP
Le2eceeeXRI02000.,9X &,
Now, let us for an instant suppose the expression
<flog {(1+A)(I+A') &C} }
L(1+A)(1+A') &Co o I

A veeee(d)

X, ), &, &Co

MDCCCXVI.
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developed in a series of powers of (1-4-A)(14-A"). &c. con-
tinued both ways to infinity, (which is evidently possible)
and let K(14-A). (14-4’)". &c. be any term of the deve-
lopement, -The corresponding term in the above coefficient
will be K(14-A)"0% (14-A)". 0. &c.——that is, K. *. 7. &,
or K.7%t9+%% Byt it is plain that the performance of the

{log. (1+A)}n0x+y+ &ec.
A

same operations on would have led

to the same result: and we may therefore conclude that the
numerator of (¢) is rightly represented by this latter ex-
pression, whose value we have already determined (equations
8,and g). The coefficient therefore of ¢*. V. &c. in the

t 4t &c. }n .
f.et!, &co—I > 1S

developement of

— x4 y+4&c.

and the same reasoning may be applied to any function of
¢ ¢’ ¢ &e. whatever. |

Analogous theorems to those we have deduced respecting
functions of one variable may easily be deduced from the
valueof A ' givenin (27). Thus, since

nt

" 't ton ¥ o
f{g s e &C.}:f{(e),(g),&c‘}
we ought to have

f{ (144)", (1+A’)n' , &ec. } "0, & =n". 1", &ec.

Fi1da, 14, &) 0”0 &L (80)

which, by assigning particular values to #, n', &c. affords an
infinite number of theorems analogous to (19) and o).

Similar theorems respecting the product of two or more
functions of ¢, ¢/, &c. may be derived. For instance, if
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F(t, ') =F(¢t, ') x f,(t, ')

we shall have

F{(1+4), 142" om0 =

=r{(144), (142 px F{(144,), (142} (040, (0'40,y,
... (81).

This, as well as other analogous theorems, flows with such

facility from the principles above laid down, that it is unne-

cessary, as it would lead me beyond the limits I proposed, to

enter into any detail respecting them.

Let us now consider the developement of a function of the
form f #(¢), f, and  being functional characteristics of a
given form, and J»(¢) denoting the result of n—1 successive
substitutions of ¥(¢) for ¢ in the expression of ¢ (¢). Let us
then suppose, for brevity’s sake, ¢ (log. (141))=¢(¢), and
equation (g) will give
YW = e(a) e ()
and for f writing j\:z"_‘

Fir == fo() e
again for f writing /4 "% and for ¢, ¢ (&) we get
’ xpn— {({O(A)} ::f‘l/ n-—-z{q)(A:)}eo’.p(A)

and so on to

FU{o(a0=) = 1o (20D g7 02072
Collecting, now, the whole result, and, for the sake of con-
venience, inverting the order of the accents, we obtain,
FUn (1) =F ¢ (&) oA+ @A) Fomo™ Dy .(32)
The second number of this equation, actually developed be-
comes ‘

S{ﬁp(mo {@(A)j § {mA)} }(g)

1200 1.2...8 tec 1.2 ..000

Ge
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S denoting that the sum of all the possible values of the
expression within the brackets is to be taken; «,8,....,
(whose number is n) varying through all integer values,
separately, from o to «w. Now the several factors which
compose this expression are respectively, the coeflicients of
t%,8, .... % in the developements of fy (¢), ($2)% ($£)%,....
(4£)". Let these coefficients be represented by H,» “Kg> K.

. .“K,, and we shall find
fIn (1) =S{H,.K; .’K,..... O P (33)
If for instance, ¥ (2) = ¢ ==log.~1 (¢), we have

H =f0d0e g = £ a

@ ~iz.. B8 1200043
whence we obtain

B v
flog_n(t) S{f(l-l—A)O ¥ o, B'y ..... y,’tl}; e (34)

a X1 N SRS SN

To take another example, let us suppose the developement
of f4m (2) were required, where ¥ (¢) == ¢ — 1. In this case
equation ( f) becomes simply
Fo(8) = (8)"
and the formula in (g2) gives
f\pn (t) =f(A)eo.A'+o'.A"+....o("—1) ¥

In this case also ( 33) becomes

Fol) = s{ DDA S a t b (30)

sa X 1. Bx ..... XTeons. y

which gives, if f (t) == t,
RO {AoBXABo"' LAy, }
el B X e ) S ;
Now A o® =1, and if, for the sake of symmetry we write
@, By+....pinstead of B, v, .. ..v, we shall have
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a B B V4 A @
7 —— Ao X AT X d AT O . .
¢(t) S{n.....ux1....Bx....x1...y,ip‘}’"""""(36)
the number of the indices , 3, .. ... w, being n—1.

It seems hardly necessary, after what has been said, to

notice that the developement of any function, such as
iy (), (), &e.}

in which ¢, /, &c. denote any number of independent vari-
ables, ¥, ", &c., any functional characteristics, and #, »’, &c.,
any indices, may be accomplished by the same means—or,
more conveniently, derived from (gg) in the same manner as
the formula (2% ) was obtained from our equation (2); and
the result included in a brief and simple expression. The cases
however are few, where the results afforded appear, if I may
so express it, in their natural form, and it would therefore be
useless at present to extend our views farther in this direction.

JOHN F. W. HERSCHEL.
Cambridge, Nov. 17, 1815.



